已知正方形ABCD,E为对角线AC上一点.
【建立模型】
(1)如图1,连接BE,DE.求证: B E = D E ;
【模型应用】
(2)如图2,F是DE延长线上一点, F B ⊥ B E ,EF交AB于点G.
①判断△FBG的形状并说明理由;
②若G为AB的中点,且AB=4,求AF的长.
【模型迁移】
(3)如图3,F是DE延长线上一点, F B ⊥ B E ,EF交AB于点G, B E = B F .求证: G E = ( 2 - 1 ) D E .
如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连结AF,F为AE上一点,且∠BFE=∠C. 求证:△ABF∽△EAD.
一定质量的氧气,其密度ρ(kg/m3)是它的体积v (m3)的反比例函数.当V=10m3时ρ=1.43kg/m3. (1)求ρ与v的函数关系式; (2)求当V=2m3时,氧气的密度.
计算:()2+4×tan45°-24+sin30°
如图,P是△ABC 内一点,请用量角器量出∠ABP.∠ACP.∠A和∠BPC的大小,再计算一下,∠ABP+∠ACP+∠A是多少度?这三个角的和与∠BPC有什么关系?你能用学到的知识来解释其中的道理吗?你能判断∠BPC和∠A的大小吗?把你的想法与同伴交流,看谁说得更有道理.
如图,D为AC上一点,E是BC延长线上一点,连BD,DE.求证:∠ADB>∠CDE.