如图,为了测量河对岸A,B两点间的距离,数学兴趣小组在河岸南侧选定观测点C,测得A,B均在C的北偏东 37 ° 方向上,沿正东方向行走90米至观测点D,测得A在D的正北方向,B在D的北偏西 53 ° 方向上.求A,B两点间的距离.
参考数据: sin 37 ° ≈ 0 . 60 , cos 37 ° ≈ 0 . 80 , tan 37 ° ≈ 0 . 75 .
(本小题10分) 如图①,将两个完全相同的三角形纸片和重合放置,其中90°,30°,. (1)操作发现 如图②,固定△,将△绕点旋转,当点恰好落在边上时,m] ①=°,旋转角α=°(0<α<90),线段与的位置关系是; ②设△的面积为,△的面积为,则与的数量关系是; (2)猜想论证 当△绕点旋转到图③所示的位置时,小明猜想(Ⅰ)中与的数量关系仍然成立,并尝试分别作出了△和△中,边上的高,,请你证明小明的猜想; (3)拓展探究 如图④,60°,平分,,∥交于点.若在射线上存在点,使,请直接写出相应的的长.
(本小题10分)如图,利用一面墙(墙的长度不限),另三边用20m长的篱笆围成一个面积为50m2的矩形场地,求矩形的长和宽各是多少.
(本小题10分)如图,两座建筑物的水平距离为30m,从点测得点的俯角为35°,测得点的俯角为43°,求这两座建筑物的高度(结果保留小数点后1 位,参考数据,,,,,).
(本小题10分)已知AB,BC,CD分别与⊙相切于E,F,G三点,且AB∥CD,连接OB,OC. (1)如图①,求∠BOC的度数; (2)如图②,延长CO交⊙O于点M,过点M做MN∥OB交CD于点N,当OB=6,OC=8时,求⊙的半径及MN的长.
(本小题8分)已知抛物线y=+bx+c过点(0,0),(1,3),求抛物线的解析式,并求出抛物线的顶点坐标.