某公司工会组织全体员工参加跳绳比赛,工会主席统计了公司 50 名员工一分钟跳绳成绩,列出的频数分布直方图如图所示,(每个小组包括左端点,不包括右端点).
求:(1) 该公司员工一分钟跳绳的平均次数至少是多少;
(2) 该公司一名员工说:"我的跳绳成绩是我公司的中位数"请你给出该员工跳绳成绩的所在范围;
(3) 若该公司决定给每分钟跳绳不低于 140 个的员工购买纪念品,每个纪念品 300 元,则公司应拿出多少钱购买纪念品.
在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E, 证明:DE=AD+BE;
如图,在△ABC中,∠ABC=66°,∠ACB=54°,BE是AC上的高,CF是AB上的高,H是BE和CF的交点,求∠ABE、∠ACF和∠BHC的度数.
已知:∠B=∠C,AD是△ABC的角平分线,DE⊥AB于E,DF⊥AC于F.,求证:BE=CF.
如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求: (1)CD的长; (2)作出△ABC的边AC上的中线BE,并求出△ABE的面积.
已知:如图,AD=BC,AC=BD.求证:∠C=∠D.( 10 分)