某公司工会组织全体员工参加跳绳比赛,工会主席统计了公司 50 名员工一分钟跳绳成绩,列出的频数分布直方图如图所示,(每个小组包括左端点,不包括右端点).
求:(1) 该公司员工一分钟跳绳的平均次数至少是多少;
(2) 该公司一名员工说:"我的跳绳成绩是我公司的中位数"请你给出该员工跳绳成绩的所在范围;
(3) 若该公司决定给每分钟跳绳不低于 140 个的员工购买纪念品,每个纪念品 300 元,则公司应拿出多少钱购买纪念品.
已知直线及其两侧两点A、B,如图. (1)在直线上求一点P,使PA=PB; (2)在直线上求一点Q,使平分∠AQB.(保留尺规作图痕迹)
如图,在正方形网格上的一个△ABC. (1)作△ABC关于直线MN的对称图形(不写作法); (2)以P为一个顶点作与△ABC全等的三角形(规定点P与点B对应,另两顶点都在图中网格交点处), 则可作出____________个三角形与△ABC全等. (3)在直线MN上找一点Q,使QB+QC的长最短.
(本题共7分)如图,A点的初始位置位于数轴上的原点。 现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,…,依此类推,这样, (1)移动1次后该点到原点的距离为_________个单位长度; (2)移动2次后该点,到原点的距离为_________ 个单位长度; (3)移动3次后该点到原点的距离为_________个单位长度; (4)试问移动n次后该点到原点的距离为多少个单位长度?
某餐厅中1张长方形的桌子可坐 6人,按下图方式将桌子拼在一起. (1)填下表: (2)若餐厅有72张这样的长方形桌子,按照上图方式每8张拼成1张大桌子,则72张桌子可拼成9张大桌子,共可坐_________人. (3)
若将餐厅中的若干张桌子拼成一张大桌子,恰好坐下200人,则餐厅共有桌子 __________张.
多项式是关于的三次三项式,并且二次项系数为1,求的值.