如图,在矩形 A B C D 中, E 为 C D 的中点, F 为 B E 上的一点,连结 C F 并延长交 A B 于点 M , M N ⊥ C M 交射线 A D 于点N. (1)当F为BE中点时,求证:AM=CE; (2)若 A B B C = E F B F = 2 ,求 A N N D 的值; (3)若 A B B C = E F B F ,当 n 为何值时, M N ∥ B E ?
计算下列各题(每小题5分,共10分)① ②
如图1,已知直线的解析式为,它与轴、y轴分别相交于A、B两点.点C从点O出发沿OA以每秒1个单位的速度向点A匀速运动;点D从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,点C、D同时出发,当点C到达点A时同时停止运动.伴随着C、D的运动,EF始终保持垂直平分CD,垂足为E,且EF交折线AB-BO-AO于点F.(1)直接写出A、B两点的坐标;(2) 设点C、D的运动时间是t秒(t>0).①用含t的代数式分别表示线段AD和AC的长度;②在点F运动的过程中,四边形BDEF能否成为直角梯形?若能求t的值;若不能,请说明理由.(可利用备用图解题)
如图,平面直角坐标系中,矩形的顶点在原点,点在轴的正半轴上,点在轴的正半轴上.已知,,是的中点,是的中点.(1)分别写出点、点的坐标;(2)过点作交轴于点,求点的坐标;(3)在线段上是否存在点,使得以点、、为顶点的三角形是等腰三角形,若存在,求出点的坐标;若不存在,请说明理由.
如图,等腰△中,,是上一点,且.(1)试说明:△∽△;(2)若,,求的长;(3)若,求的度数.
两年前某种药品每吨的生产成本是5000元,随着生产技术的进步,现在生产这种药品的成本是每吨3000元,假设这两年成本的平均下降北一样,那么该药品成本的年平均下降率是多少?(精确到0.1%)