如图,在平行六面体 ABCD ﹣ A 1 B 1 C 1 D 1 中, A A 1 ⊥ 平面 ABCD ,且 AB = AD = 2 , A A 1 = 3 , ∠ BAD = 120 ° .
(Ⅰ)求异面直线 A 1 B 与 A C 1 所成角的余弦值;
(Ⅱ)求二面角 B ﹣ A 1 D ﹣ A 的正弦值.
定义在上的函为常数)在x=-1处取得极值,且 的图像在数处的切线平行与直线.(1)求函数的解析式及极值;(2)设,求不等式的解集;(3)对任意
已知二次函数同时满足:⑴不等式的解集有且只有一个元素;⑵在定义域内存在,使得不等式成立。设数列的前(1)求数列的通项公式;(2)设(3)设各项均不为零的数列中,所有满足的正整数i的个数称为这个数列的变号数.另
已知点(1)求轨迹E的方程;(2)若直线l过点F2且与轨迹E交于P、Q两点,①无论直线绕点怎样转动,在轴上总存在定点,使恒成立,求实数的值;②过作直线的垂线求的取值范围
已知函数,(1)在区间是增函数还是减函数?并证明你的结论;(2)若当时,恒成立,求整数的最小值。