如图,在四棱锥 P ﹣ ABCD 中,底面 ABCD 为正方形,平面 PAD ⊥ 平面 ABCD ,点M在线段PB上, PD ∥ 平面 MAC , PA = PD = 6 , AB = 4 .
(1)求证:M为PB的中点;
(2)求二面角 B ﹣ PD ﹣ A 的大小;
(3)求直线MC与平面BDP所成角的正弦值.
(本大题共14分)已知函数(为实常数)的两个极值点为,且满足(1)求的取值范围;(2)比较与的大小.
本大题共13分)三个求职者到某公司应聘,该公司为他们提供了A,B,C,D四个岗位,每人从中任选一个岗位。(1)求恰有两个岗位没有被选的概率;(2)设选择A岗位的人数为,求的分布列及数学期望。
(本大题共12分)过点P(1,0)作直线交椭圆于A,B两点,若,求直线的方程。
(本大题共12分)已知(1)求; (2).
(本大题共12分)如图 为正方体,一只青蛙开始在顶点A处,它每次可随意跳到相邻三顶点之一,若在五次内跳到点,则停止跳动;若5次内不能跳到点,跳完五次也停止跳动,求:(1)5次以内能到点的跳法有多少种?(2)从开始到停止,可能出现的跳法有多少种?