(本小题满分8分)已知函数(1)求f(x)的定义域及最小正周期 (2)求f(x)的单调递减区间.
在甲、乙等6个单位参加的一次"唱读讲传"演出活动中,每个单位的节目集中安排在一起. 若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……,6),求: (Ⅰ)甲、乙两单位的演出序号均为偶数的概率; (Ⅱ)甲、乙两单位的演出序号不相邻的概率.
已知 { a n } 是首项为19,公差为-2的等差数列, S n 为 { a n } 的前 n 项和. (Ⅰ)求通项 a n 及 S n ; (Ⅱ)设 { b n - a n } 是首项为1,公比为3的等比数列,求数列 { b n } 的通项公式及其前 n 项和 T n .
在数列中,,且对任意.,,成等差数列,其公差为。 (Ⅰ)若=,证明,,成等比数列() (Ⅱ)若对任意,,,成等比数列,其公比为。
如图,在长方体中,、分别是棱, 上的点,, (1)求异面直线与所成角的余弦值; (2)证明平面 (3)求二面角的正弦值。
已知函数 (Ⅰ)求函数的最小正周期及在区间上的最大值和最小值; (Ⅱ)若,求的值。