某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时,某地上班族S中的成员仅以自驾或公交方式通勤,分析显示:当S中 x % ( 0 < x < 100 ) 的成员自驾时,自驾群体的人均通勤时间为
f ( x ) = { 30 , 0 < x ≤ 30 , 2 x + 1800 x - 90 , 30 < x < 100 (单位:分钟),
而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:
(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族S的人均通勤时间 g x 的表达式;讨论 g x 的单调性,并说明其实际意义。
已知函数. (1)求函数的极值; (2)若对任意的,都有,求实数a的取值范围.
某大学自主招生面试时将20名学生平均分成甲,乙两组,其中甲组有4名女学生,乙组有6名女学生.现采用分层抽样(层内采用不放回简单随即抽样)从甲、乙两组中共抽取4名学生进行第一轮面试. (Ⅰ)求从甲、乙两组各抽取的人数; (Ⅱ)求从甲组抽取的学生中恰有1名女学生的概率; (Ⅲ)求抽取的4名学生中恰有2名男学生的概率.
设函数为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为. (Ⅰ)求,,的值; (Ⅱ)求函数的单调递增区间,并求函数在上的最大值和最小值.
如图,在四棱椎P-ABCD中,底面ABCD是边长为的正方形,且PD=,PA=PC=. (1)求证:直线PD⊥面ABCD; (2)求二面角A-PB-D的大小.
某生物学习小组对、两种珍惜植物种子的发芽率进行实验性实验,每实验一次均种下一粒种子和一粒种子.已知、两种种子在一定条件下每粒发芽的概率分别为.假设任何两粒种子是否发芽相互之间没有影响. (Ⅰ)求3粒种子,至少有1粒未发芽的概率; (Ⅱ)求、各3粒种子,至少2粒发芽且全发芽的概率.