某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时,某地上班族S中的成员仅以自驾或公交方式通勤,分析显示:当S中 x % ( 0 < x < 100 ) 的成员自驾时,自驾群体的人均通勤时间为
f ( x ) = { 30 , 0 < x ≤ 30 , 2 x + 1800 x - 90 , 30 < x < 100 (单位:分钟),
而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:
(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族S的人均通勤时间 g x 的表达式;讨论 g x 的单调性,并说明其实际意义。
已知集合, (1)若,求实数的值; (2)若,求实数的取值范围。
已知复数满足: 求的值.
已知向量=(sin,1),=(cos,cos2) (1)若·=1,求cos(-x)的值; (2)记f(x)=·,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
在海岸A处,发现北偏东45°方向距A为-1海里的B处有一艘走私船,在A处北偏西75°的方向,距A为2海里的C处的缉私船奉命以10海里/小时的速度追截走私船.此时走私船正以10海里/小时的速度从B处向北偏东30°方向逃窜,问缉私船沿着什么方向能最快追上走私船?并求出所需要的时间.(注:≈2.449)
在中,已知 (1)求证: (2)若求A的值.