已知数集 A = { a 1 , a 2 , ⋯ a n } ( 1 ≤ a 1 < a 2 < ⋯ a n , n ≥ 2 ) 具有性质 P ;对任意的 i , j ( 1 ≤ i ≤ j ≤ n ) , a i a j 与 a j a i 两数中至少有一个属于 A 。
(Ⅰ)分别判断数集 { 1 , 3 , 4 } 与 { 1 , 2 , 3 , 6 } 是否具有性质 P ,并说明理由;
(Ⅱ)证明: a 1 = 1 ,且 a 1 + a 2 + ⋯ + a n a 1 - 1 + a 2 - 1 + ⋯ + a n - 1 = a n ;
(Ⅲ)证明:当 n = 5 时, a 1 a 2 a 3 a 4 a 5 成等比数列。
已知f(x)=log4(2x+3-x2),求f(x)的定义域、单调区间和值域;
已知函数f(x)=b·ax(其中a,b为常量,且a>0,a≠1)的图象经过点A(1,6),且其反函数的图像经过点B(24,3),求f(x)的解析式;
已知命题在[-1,1]上有解,命题q: 只有一个实数x满足: (I)若的图象必定过两定点,试写出这两定点的坐标(只需填写出两点坐标即可); (II)若命题“p或q”为假命题,求实数a的取值范围.
已知函数时都取得极值. (I)求a、b的值与函数的单调区间; (II)若对的取值范围.
某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口的O北偏西30°且与该港口相距20海里的A处,并正以30海里/小时的航行速度沿正东方向匀速行驶.假设该小艇沿直线方向以v海里/小时的航行速度匀速行驶,经过t小时与轮船相遇. (I)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少? (II)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值.