若 A 、 B 是抛物线 y 2 = 4 x 上的不同两点, 弦 AB (不平行于 y 轴)的垂直平分线与 x 轴相交于点 P , 则称弦 AB 是点 P 的一条 "相关弦".已知当 x > 2 时,点 P ( x , 0 )
存在无穷多条 "相关弦" .给定 x 0 > 2 .
(I) 证明:点 P x 0 , 0 的所有"相关弦"的中点的横坐标相同;
(II) 试问:点 P x 0 , 0 的"相关弦"的弦长中是否存在最大值?若存在, 求其最大值(用 x 0 表示):若不存在, 请说明理由.
已知函数. (1)若,求的取值范围; (2)设△的内角A、B、C所对的边分别为a、b、c,已知为锐角,,,,求的值.
设函数,,, (1)若曲线与轴相切于异于原点的一点,且函数的极小值为,求的值; (2)若,且, ①求证:; ②求证:在上存在极值点.
如图,两条相交线段、的四个端点都在椭圆上,其中,直线的方程为,直线的方程为. (1)若,,求的值; (2)探究:是否存在常数,当变化时,恒有?
如图,四棱锥的底面ABCD是平行四边形,,,面,设为中点,点在线段上且. (1)求证:平面; (2)设二面角的大小为,若,求的长.
设数列的前n项和为,,且成等比数列,当时,. (1)求证:当时,成等差数列; (2)求的前n项和.