若 A 、 B 是抛物线 y 2 = 4 x 上的不同两点, 弦 AB (不平行于 y 轴)的垂直平分线与 x 轴相交于点 P , 则称弦 AB 是点 P 的一条 "相关弦".已知当 x > 2 时,点 P ( x , 0 )
存在无穷多条 "相关弦" .给定 x 0 > 2 .
(I) 证明:点 P x 0 , 0 的所有"相关弦"的中点的横坐标相同;
(II) 试问:点 P x 0 , 0 的"相关弦"的弦长中是否存在最大值?若存在, 求其最大值(用 x 0 表示):若不存在, 请说明理由.
(本小题满分12分)已知圆经过、两点,且圆心在直线上. (Ⅰ)求圆的方程; (Ⅱ)若直线与圆总有公共点,求实数的取值范围.
(本小题满分10分)已知命题:表示焦点在轴上的椭圆,命题:表示双曲线.若或为真,且为假,求的取值范围.
已知抛物线与椭圆在第一象限的交点为B,O为坐标原点,A是椭圆右顶点,的面积为. (1)求抛物线的方程; (2)过A点作直线交于C,D两点,射线OC,OD分别交于E,F两点,记和的面积分别为和,问是否存在直线,使得若存在,求出直线方程,若不存在,请说明理由.
已知抛物线,圆,过点作不过原点O的直线PA,PB分别与抛物线和圆相切,A,B为切点(A为抛物线切点,B为圆的切点). (1)求点A,B坐标; (2)求面积.
已知椭圆C:的左焦点为,点,直线DF的斜率为. (1)求椭圆的离心率; (2)设过点F的直线交椭圆于A,B两点,过点P作与直线AB的倾斜角互补的直线交椭圆于M,N两点,问是否为定值,若是求出此定值,若不是说明理由.