在一个特定时段内, 以点 E 为中心的7海里以内海域被设为警戒水域.点 E 正北55海里处有一个 雷达观测站 A .某时刻测得一艘匀速直线行驶的船只位于点 A 北偏东 45 ∘ 且与点 A 相距 40 2 海里的位置 B ,经过40分钟又测得该船已行驶到点 A 北偏东 45 ∘ + θ (其中 sin θ = 26 26 , 0 ∘ < θ < 90 ∘ )且与点 A 相距 10 13 海里的位置C.
(Ⅰ)求该船的行驶速度(单位:海里/小时);
(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
已知数列{an}的前n项Sn=pn+q(p≠0,p≠1),求数列{an}是等比数列的充要条件.
已知p:|1-|≤2,q:x2-2x+1-m2≤0(m>0),若⌐p是⌐q的必要而不充分条件,求实数m的取值范围.
如图,已知平行六面体ABCD—A1B1C1D1的底面ABCD是菱形,且∠C1CB=∠C1CD=∠BCD. (1)求证: C1C⊥BD (2)当的值为多少时,能使A1C⊥平面C1BD?请给出证明.
已知函数f1(x)=,f2(x)=x+2, (1)设y=f(x)=,试画出y=f(x)的图像并求y=f(x)的曲线绕x轴旋转一周所得几何体的表面积; (2)若方程f1(x+a)=f2(x)有两个不等的实根,求实数a的范围. (3)若f1(x)>f2(x-b)的解集为[-1,],求b的值.
已知函数f(x)是y=-1(x∈R)的反函数,函数g(x)的图像 与函数y=-的图像关于y轴对称,设F(x)=f(x)+g(x). (1)求函数F(x)的解析式及定义域; (2)试问在函数F(x)的图像上是否存在两个不同的点A、B,使直线AB恰好与y轴垂直?若存在,求出A、B的坐标;若不存在,说明理由