在一个特定时段内, 以点 E 为中心的7海里以内海域被设为警戒水域.点 E 正北55海里处有一个 雷达观测站 A .某时刻测得一艘匀速直线行驶的船只位于点 A 北偏东 45 ∘ 且与点 A 相距 40 2 海里的位置 B ,经过40分钟又测得该船已行驶到点 A 北偏东 45 ∘ + θ (其中 sin θ = 26 26 , 0 ∘ < θ < 90 ∘ )且与点 A 相距 10 13 海里的位置C.
(Ⅰ)求该船的行驶速度(单位:海里/小时);
(II)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
设是等差数列,是各项都为正数的等比数列,且,,.(Ⅰ)求、的通项公式;(Ⅱ)求数列的前n项和。
在中,为锐角,角所对的边分别为,且;(I)求的值;(II)若,求的值。
设函数. (1)求函数在区间的最小值; (2)当时,记曲线在处的切线为,与轴交于点,求证:.
设数列的前项和为,且满足,,. (1)猜想的通项公式,并加以证明; (2)设,且,证明:.
设函数,其中为大于零的常数. (1)当时,求函数的单调区间和极值; (2)若在区间上至少存在一点,使得成立,求的取值范围.