在极坐标系中,O为极点,点 M ( ρ 0 , θ 0 ) ( ρ 0 > 0 ) 在曲线 C : ρ = 4 sin θ 上,直线l过点 A ( 4 , 0 ) 且与 OM 垂直,垂足为P.
(1)当 θ 0 = π 3 时,求 ρ 0 及l的极坐标方程;
(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.
如图,在四棱锥中,底面,,,是的中点. (Ⅰ)求和平面所成的角的大小; (Ⅱ)证明平面;
已知直线l1:mx+8y+n=0与l2:2x+my-1=0互相平行,求过点(m,n)与垂直并且被截得的线段长为的直线方程。
正三棱锥的高为1,底面边长为,此三棱锥内有一个球和四个面都相切. (1)求棱锥的全面积; (2)求球的直径.
如图,平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且G是EF的中点, (1)求证平面AGC⊥平面BGC; (2)求GB与平面AGC所成角的正弦值.
已知函数是偶函数,且时,.求 (1) 的值, (2) 时的值; (3)当>0时,的解析式.