如图,若BE∥CF∥DG,AB∶BC∶CD=1∶2∶3,CF=12 cm,求BE,DG的长.
(本小题满分12分) 如图:在正方体ABCD—A1B1C1D1中,M、N、P分别为所在边的中点,O为面对角线A1C1的中点. (1) 求证:面MNP∥面A1C1B;(2) 求证:MO⊥面A1C1.
(本小题满分12分)已知椭圆的离心率为,其中左焦点F(-2,0).(1) 求椭圆C的方程;(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.
(本小题满分12分)已知向量a=(2,1),b=(x,y). (1) 若x∈{-1,0,1,2},y∈{-1,0,1},求向量a∥b的概率;(2) 若x∈[-1,2],y∈[-1,1],求向量a,b的夹角是钝角的概率.
(本小题满分12分)已知,<θ<π. (1) 求tanθ;(2) 求的值.
( (本小题满分14分)已知函数 (1) 当时,求函数的最值;(2) 求函数的单调区间;(3) 试说明是否存在实数使的图象与无公共点.