在直角坐标系xOy中,曲线C的参数方程为 x = 2 - t - t 2 y = 2 - 3 t + t 2 (t为参数且t≠1),C与坐标轴交于A、B两点.
(1)求 | AB | ;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求直线AB的极坐标方程.
已知椭圆的焦点分别为和,长轴长为,设直线交椭圆于两点,求线段的中点坐标。
设椭圆中心是坐标原点,长轴在轴上,离心率,已知点到这个椭圆上的点的最远距离是,求这个椭圆的方程,并椭圆上到点的距离等于的点的坐标。
设是椭圆的两个焦点,是椭圆上任意一点,求的最大值和最小值。
设是椭圆的一个焦点,是短轴,,求这个椭圆的离心率。
椭圆比椭圆焦点在轴上的椭圆更接近于圆,求的范围。