如图,四棱锥 P- ABCD的底面为正方形, PD⊥底面 ABCD.设平面 PAD与平面 PBC的交线为 l.
(1)证明: l⊥平面 PDC;
(2)已知 PD= AD=1, Q为 l上的点,求 PB与平面 QCD所成角的正弦值的最大值.
如图,正三角形ABC的边长为2,D,E,F分别在三边AB,BC和CA上,且D为AB的中点,,,.(1)当时,求的大小;(2)求的面积S的最小值及使得S取最小值时的值.
设不等式的解集为M,.(1)证明:;(2)比较与的大小,并说明理由.
已知曲线的直角坐标方程为. 以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系. P是曲线上一点,,,将点P绕点O逆时针旋转角后得到点Q,,点M的轨迹是曲线.(1)求曲线的极坐标方程;(2)求的取值范围.
如图,四边形ABCD内接于圆,BD是圆的直径,于点E,DA平分.(1)证明:AE是圆的切线;(2)如果,,求CD.
已知函数,. (1)求函数的最小值; (2)若,证明:当时,.