已知函数 f ( x ) = e x - a ( x + 2 ) .
(1)当 a = 1 时,讨论 f ( x ) 的单调性;
(2)若 f ( x ) 有两个零点,求 a 的取值范围.
某房地产开发公司用2.56×107元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房,经测算,如果将楼房建为(≥10)层,则每平米的平均建筑费用为1000+50(单位:元) (Ⅰ)写出楼房平均综合费用y关于建造层数x的函数关系式; (Ⅱ)该楼房应建造多少层时,可使楼房每平米的平均综合费用最少?最少费用是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)
已知直线l经过直线3x+4y﹣2=0与直线2x+3y﹣2=0的交点,且垂直于直线x﹣2y﹣1=0. (Ⅰ)求直线的方程; (Ⅱ)求直线与两坐标轴围成的三角形的面积S.
在△ABC中,角A,B,C的对边分别是且. (1)求角B的大小; (2)若=4,=3,D为BC的中点,求△ABC的面积及AD的长度.
求圆心在直线2x﹣y﹣3=0上,且过点A(5,2)和点B(3,2)的圆的方程.
数列的前项和为,,函数. (1)求的值和数列的通项公式; (2)证明:当时,; (3)求证:.