如图, D 为圆锥的顶点, O 是圆锥底面的圆心, △ ABC 是底面的内接正三角形, P 为 DO 上一点,∠ APC=90°.
(1)证明:平面 PAB⊥平面 PAC;
(2)设 DO= 2 ,圆锥的侧面积为 3 π ,求三棱锥 P− ABC的体积.
(本小题12分)已知向量,,设函数.①求函数的最小正周期及在上的最大值;②已知的角A、B、C所对的边分别为a、b、c,A、B为锐角,,,又,求a、b、c的值.
(本小题满分14分)已知定义在上的两个函数的图象在点处的切线的斜率为(1)求的解析式;(2)试求实数k的最大值,使得对任意恒成立;(3)若,求证:
双曲线的左、右焦点分别为、,为坐标原点,点在双曲线的右支上,点在双曲线左准线上,(Ⅰ)求双曲线的离心率;(Ⅱ)若此双曲线过,求双曲线的方程;(Ⅲ)在(Ⅱ)的条件下,、分别是双曲线的虚轴端点(在轴正半轴上),过的直线交双曲线于点、,,求直线的方程。
(本小题满分12分)某旅游点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆。为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得)。(1)求函数f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?
(本小题满分12分)如图,四边形为矩形,平面ABE 为上的点,且平面, (1)求证:平面;(2)求证:平面;(3)求三棱锥的体积.