(本小题满分12分)在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为= (>0),过点的直线的参数方程为 (t为参数),直线与曲线C相交于A,B两点.(Ⅰ)写出曲线C的直角坐标方程和直线的普通方程;(Ⅱ)若,求的值.
一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.(Ⅰ)求箱产品被用户接收的概率;(Ⅱ)记抽检的产品件数为,求的分布列和数期望.
在中,,.(Ⅰ)求;(Ⅱ)设,求的值.
已知数列,.(1)求证:数列为等比数列;(2)数列中,是否存在连续的三项,这三项构成等比数列?试说明理由;(3)设,其中为常数,且,,求.
已知指数函数满足:,定义域为的函数是奇函数。(1)求的解析式;(2)求m,n的值;(3)若对任意的,不等式恒成立,求实数的取值范围。
已知函数的最大值为,的图像的相邻两对称轴间的距离为,与轴的交点坐标为. (1)求函数的解析式;(2)设数列,为其前项和,求.