(本小题满分12分)如图,在底面为直角梯形的四棱锥中,,平面.PA=4,AD=2,AB=,BC=6(Ⅰ)求证:平面;(Ⅱ)求二面角D—PC—A的大小.
某商店试销某种商品20天,获得如下数据:
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。 (1)求当天商品不进货的概率; (2)记 X 为第二天开始营业时该商品的件数,求 X 的分布列和数学期望。
在 △ABC 中,角 A,B,C 所对的边分别为 a,b,c ,且满足 csinA=acosC . (1)求角 C 的大小; (2)求 3 sinA-cos(B+ π 4 ) 的最大值,并求取得最大值时角 A,B 的大小.
已知函数(a是常数,a∈R) (1)当a=1时求不等式的解集. (2)如果函数恰有两个不同的零点,求a的取值范围.
已知曲线(为参数),曲线,将的横坐标伸长为原来的2倍,纵坐标缩短为原来的得到曲线. (1)求曲线的普通方程,曲线的直角坐标方程; (2)若点P为曲线上的任意一点,Q为曲线上的任意一点,求线段的最小值,并求此时的P的坐标.
如图,在中,是的∠A的平分线,圆经过点与切于点,与相交于,连结,. (1)求证:;(2)求证:.