(本小题满分14分)已知函数,其中为常数.(1)当时,求函数的单调递增区间;(2)若任取,求函数在上是增函数的概率.
(本小题满分13分)某巡逻艇在A处发现北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度逃窜. (Ⅰ)若巡逻艇计划在正东方向进行拦截,问巡逻艇应行驶到什么位置进行设卡? (Ⅱ)若巡逻艇立即以14海里/小时的速度沿着直线方向追击,问经多少时间后巡逻艇恰追赶上该走私船?
(本小题满分13分) 如图,是单位圆与轴正半轴的交点,,为单位圆上不同的点,,,, (Ⅰ)当为何值时,? (Ⅱ)若,则当为何值时,点在单位圆上?
(本小题满分13分) 已知函数,,. (Ⅰ)求常数的值;(Ⅱ)求函数的最小正周期和最大值.
设椭圆的焦点分别为,直线交轴于点,且. (1)试求椭圆的方程; (2)过分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),试求四边形面积的最大值和最小值.
已知方程有两个不等的负根;方程无实根,若或为真,且为假,求的取值范围。