设a,b为实数,且 a > 1 ,函数 f x = a x - bx + e 2 ( x ∈ R )
(1)求函数 f x 的单调区间;
(2)若对任意 b > 2 e 2 ,函数 f x 有两个不同的零点,求a的取值范围;
(3)当 a = e 时,证明:对任意 b > e 4 ,函数 f x 有两个不同的零点 x 1 , x 2 ,满足 x 2 > b ln b 2 e 2 x 1 + e 2 b .
(注: e = 2 . 71828 ⋅ ⋅ ⋅ 是自然对数的底数)
已知函数 (1)求函数在上的最大值与最小值; (2)若时,函数的图像恒在直线上方,求实数的取值范围; (3)证明:当时,
已知是的导函数,,且函数的图象过点. (1)求函数的表达式; (2)求函数的单调区间和极值.
已知,( a为常数,e为自然对数的底). (1) (2)时取得极小值,试确定a的取值范围; (3)在(2)的条件下,设的极大值构成的函数,将a换元为x,试判断是否能与(m为确定的常数)相切,并说明理由.
设函数. (1)若在时有极值,求实数的值和的极大值; (2)若在定义域上是增函数,求实数的取值范围.
已知椭圆C的两焦点分别为,长轴长为6, ⑴求椭圆C的标准方程; ⑵已知过点(0,2)且斜率为1的直线交椭圆C于A 、B两点,求线段AB的长度。.