设a,b为实数,且 a > 1 ,函数 f x = a x - bx + e 2 ( x ∈ R )
(1)求函数 f x 的单调区间;
(2)若对任意 b > 2 e 2 ,函数 f x 有两个不同的零点,求a的取值范围;
(3)当 a = e 时,证明:对任意 b > e 4 ,函数 f x 有两个不同的零点 x 1 , x 2 ,满足 x 2 > b ln b 2 e 2 x 1 + e 2 b .
(注: e = 2 . 71828 ⋅ ⋅ ⋅ 是自然对数的底数)
如图所示,已知圆的直径长度为4,点为线段上一点,且,点为圆上一点,且.点在圆所在平面上的正投影为 点,. (1)求证:平面; (2)求点到平面的距离.
一般来说,一个人脚掌越长,他的身高就越高.现对10名成年人的脚掌长与身高进行测量,得到数据(单位均为)作为一个样本如上表示.
(1)在上表数据中,以“脚掌长”为横坐标,“身高”为纵坐标,做出散点图后,发现散点在一条直线附近,试求“身高”与“脚掌长”之间的线性回归方程; (2)若某人的脚掌长为,试估计此人的身高; (3)在样本中,从身高180cm以上的4人中随机抽取2人作进一步的分析,求所抽取的2人中至少有1人身高在190cm以上的概率. (参考数据:,)
在△ABC中,a、b、c分别是角A、B、C所对的边,满足 (1)求角B的大小; (2)若,求函数的值域。
对于在区间上有意义的两个函数,如果对于任意的,都有则称在区间上是“接近的”两个函数,否则称它们在区间上是“非接近的”两个函数。现有两个函数给定一个区间。 (1)若在区间有意义,求实数的取值范围; (2)讨论在区间上是否是“接近的”。
若S是公差不为0的等差数列的前项和,且成等比数列。 (1)求等比数列的公比; (2)若,求的通项公式; (3)设,是数列的前项和,求使得对所有都成立的最小正整数。