如图,在直三棱柱中,分别为、的中点,为上的点,且(I)证明:∥平面;(Ⅱ)若,,求三棱锥的体积.
设椭圆:,直线过椭圆左焦点且不与轴重合,与椭圆交于,当与轴垂直时,,为椭圆的右焦点,为椭圆上任意一点,若面积的最大值为。 (1)求椭圆的方程; (2)直线绕着旋转,与圆:交于两点,若,求的面积的取值范围。
如图一,平面四边形ABCD关于直线AC对称,,,。 把沿BD折起(如图二),使二面角A-BD-C的余弦值等于。对于图二, (1)求的长,并证明:平面; (2)求直线与平面所成角的正弦值。
数列的前项和为,,,等差数列满足,。 (1)分别求数列,的通项公式; (2)若对任意的,恒成立,求实数的取值范围。
在中,角所对的边分别为,且满足。 (1)求的值; (2)若点在双曲线上,求的值
(本小题满分14分) 已知函数. (Ⅰ)若,求曲线在处切线的斜率; (Ⅱ)求的单调区间; (Ⅲ)设,若对任意,均存在,使得,求的取值范围.