在直角坐标系中,是过定点且倾斜角为的直线;在极坐标系(以坐标原点为极点,以轴非负半轴为极轴,取相同单位长度)中,曲线的极坐标方程为.(I)写出直线的参数方程;并将曲线的方程化为直角坐标方程;(II)若曲线与直线相交于不同的两点,求的取值范围.
选修4-1:几何证明选讲 如图,是的一条切线,切点为,直线,,都是的割线,已知. (1)求证:; (2)若,.求的值.
已知函数,其中e为自然对数的底数,a为常数. (1)若对函数存在极小值,且极小值为0,求a的值; (2)若对任意,不等式恒成立,求a的取值范围.
椭圆过点,离心率为,左、右焦点分别为,过的直线交椭圆于两点. (Ⅰ)求椭圆C的方程; (Ⅱ)当的面积为时,求直线的方程.
如图,在直三棱柱中,平面侧面且. (Ⅰ)求证:; (Ⅱ)若直线AC与平面所成的角为,求锐二面角的大小.
生产,两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:
(Ⅰ)试分别估计元件、元件为正品的概率; (Ⅱ)生产一件元件,若是正品可盈利50元,若是次品则亏损10元;生产一件元件,若是正品可盈利100元,若是次品则亏损20元,在(Ⅰ)的前提下 (i)求生产5件元件所获得的利润不少于300元的概率; (ii)记为生产1件元件和1件元件所得的总利润,求随机变量的分布列和期望.