已知函数,若在=1处的切线方程为。 (1) 求的解析式及单调区间; (2) 若对任意的都有≥成立,求函数=的最值。
(本小题满分11分)已知数列的前项和. (1)求数列的通项公式; (2)证明:对任意,都有,使得成等比数列.
(本小题满分12分)已知椭圆,其中为左、右焦点,且离心率,直线与椭圆交于两不同点.当直线过椭圆C右焦点F2且倾斜角为时,原点O到直线的距离为. (Ⅰ)求椭圆C的方程; (Ⅱ)若,当面积为时,求的最大值.
(本小题满分12分)已知直线,双曲线.①若直线与双曲线的其中一条渐近线平行,求双曲线的离心率;②若直线过双曲线的右焦点,与双曲线交于、两点,且,求双曲线方程。
(本小题满分12分).已知椭圆经过点,离心率. (Ⅰ)求椭圆的方程; (Ⅱ)不过原点的直线与椭圆交于两点,若的中点在抛物线上,求直线的斜率的取值范围.
(本小题满分12分).已知双曲线与椭圆有共同的焦点,点在双曲线上. (Ⅰ)求双曲线的方程; (Ⅱ)以为中点作双曲线的一条弦,求弦所在直线的方程.