如图,已知F是抛物线 y 2 = 2 p x ( p > 0 ) 的焦点, M 是抛物线的准线与x轴的交点,且 M F = 2 ,
(1)求抛物线的方程;
(2)设过点F的直线交抛物线与A、B两点,斜率为2的直线l与直线 MA , M B , A B , x 轴依次交于点P,Q,R,N,且 R N 2 = P N · Q N ,求直线 L 在 x 轴上截距的范围。
已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)若在上恒成立,求实数的取值范围; (Ⅲ)在(Ⅱ)的条件下,对任意的,求证:.
已知离心率为的椭圆的右焦点是圆的圆心,过椭圆上的动点作圆的两条切线分别交轴于(与点不重合)两点. (Ⅰ)求椭圆方程; (Ⅱ)求线段长的最大值,并求此时点的坐标.
如图,AB是半圆O的直径,C是半圆O上除A、B外的一个动点,DC垂直于半圆O所在的平面,DC∥EB,DC=EB,AB=4,. (Ⅰ)证明:平面ADE⊥平面ACD; (Ⅱ)当三棱锥C-ADE体积最大时,求二面角D-AE-B的余弦值.
某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,并按[0,10],(10,20],(20,30],(30,40],(40,50]分组,得到频率分布直方图如下: 假设甲、乙两种酸奶独立销售且日销售量相互独立. (Ⅰ)写出频率分布直方图(甲)中的a的值;记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为,,试比较与的大小;(只需写出结论) (Ⅱ)估计在未来的某一天里,甲、乙两种酸奶的销售量恰有一个高于20箱且另一个不高于20箱的概率; (Ⅲ)记X表示在未来3天内甲种酸奶的日销售量不高于20箱的天数,以日销售量落入各组的频率作为概率,求X的数学期望.
在中,角的对边分别为,向量,向量,且: (Ⅰ)求角的大小; (Ⅱ)设BC中点为D,且:求a+2c的最大值及此时的面积.