已知数列 a n 的前n项和为 S n , a 1 = - 9 4 ,且 4 S n + 1 = 3 S n - 9 .
(1)求数列 a n 的通项;
(2)设数列 b n 满足 3 b n + ( n - 4 ) a n = 0 ,记 b n 的前n项和为 T n ,若 T n ≤ λ b n 对任意 n ∈ N * 恒成立,求 λ 的范围.
已知函数 ,设函数 。 (1)求函数 的定义域及值域; (2)判断函数的奇偶性,并说明理由。
已知一次函数满足.(1)求这个函数的解析式;(2)若函数,求函数的零点.
已知集合,集合 (1)当 时,求集合,; (2)若,求实数的取值范围。
已知椭圆G:,过点A(0,5),B(﹣8,﹣3),C、D在该椭圆上,直线CD过原点O,且在线段AB的右下侧.(1)求椭圆G的方程;(2)求四边形ABCD 的面积的最大值.
已知直线与圆C:相交于A,B两点,弦AB中点为M(0,1),(1)求实数的取值范围以及直线的方程;(2)若圆C上存在四个点到直线的距离为,求实数a的取值范围;(3)已知N(0,﹣3),若圆C上存在两个不同的点P,使,求实数的取值范围.