如图,在四棱锥 P - ABCD 中,底面 ABCD 是平行四边形, ∠ ABC = 120 ° , AB = 1 , BC = 4 , PA = 15 ,M,N分别为 BC , PC 的中点, PD ⊥ DC , PM ⊥ MD .
(1)证明: AB ⊥ PM ;
(2)求直线 AN 与平面 PDM 所成角的正弦值.
在⊿ABC中,a,b,c分别为内角A,B,C所对的边,A<B<C,A,B,C成等差数列,公差为,且也成等差数列. (I)求; (II)若,求⊿ABC的面积。
已知,不等式的解集为M . (I)求M; (II)当时,证明:.
已知点P在曲线:(为参数,)上,点Q在曲线:上 (1)求曲线的普通方程和曲线的直角坐标方程; (2)求点P与点Q之间距离的最小值.
自圆外一点引圆的一条切线,切点为,为的中点,过点引圆的割线交该圆于两点,且,. ⑴求证:与相似; ⑵求的大小.
已知函数,其中. (Ⅰ)求的单调区间; (Ⅱ)若在上存在最大值和最小值,求的取值范围.