已知直三棱柱 ABC - A 1 B 1 C 1 中,侧面为正方形, AB = BC = 2 ,E,F分别为 AC 和 C C 1 的中点, BF ⊥ A 1 B 1 .
(1)求三棱锥 F - EBC 的体积;
(2)已知D为棱 A 1 B 1 上的点,证明: BF ⊥ DE .
如图,在直三棱柱中,,,异面直线与所成的角为.(Ⅰ)求证:;(Ⅱ)设是的中点,求与平面所成角的正弦值.
设数列{an}是等差数列,数列{bn}的前n项和Sn满足且(Ⅰ)求数列{an}和{bn}的通项公式:(Ⅱ)设Tn为数列{Sn}的前n项和,求Tn.
已知无穷数列中,、 、、构成首项为2,公差为-2的等差数列,、、、,构成首项为,公比为的等比数列,其中,.(1)当,,时,求数列的通项公式;(2)若对任意的,都有成立.①当时,求的值;②记数列的前项和为.判断是否存在,使得成立?若存在,求出的值;若不存在,请说明理由.
已知函数(为常数).(1)当时,求的单调递减区间;(2)若,且对任意的,恒成立,求实数的取值范围.
已知椭圆的中心在坐标原点,右准线为,离心率为.若直线与椭圆交于不同的两点、,以线段为直径作圆.(1)求椭圆的标准方程;(2)若圆与轴相切,求圆被直线截得的线段长.