已知 a > 0 , 函数 f ( x ) = ax - x e x .
(1) 求曲线 f ( x ) 在点 ( 0 , f ( 0 ) ) 处的切线方程.
(2) 证明: f ( x ) 存在唯一的极值点.
(3) 若存在 a , 使得 f ( x ) ⩽ a + b 对任意 x ∈ R 成立, 求实数 b 的取值范围.
如图,已知三角形的顶点为,,,求: (1)AB边上的中线CM所在直线的方程; (2)求△ABC的面积.
一个几何体的三视图及其尺寸如下(单位:cm). (1)画出该几何体的直观图,并说明图形名称(尺寸不作要求); (2)求该几何体的表面积.
(1)直线在x轴上的截距是-1,在y轴上的截距是4,求此直线方程; (2)求过直线x-2y+3=0和2x+y-4=0的交点,斜率为1 的直线方程。
如图,在三棱柱中,平面ABC,D、E分别是BC和的中点,已知AB=AC=AA1=4,ÐBAC=90°. (1)求证:⊥平面; (2)求二面角的余弦值; (3)求三棱锥的体积.
如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,是AC的中点,已知,. (1)求证:OD//平面VBC; (2)求证:AC⊥平面VOD; (3)求棱锥的体积.