如图,在三棱柱中,平面ABC,D、E分别是BC和的中点,已知AB=AC=AA1=4,ÐBAC=90°. (1)求证:⊥平面; (2)求二面角的余弦值; (3)求三棱锥的体积.
某学校从参加高一年级期末考试的学生中抽出20名学生,将其成绩(均为整数)分成六段,, ,后画出如下部分频率分布直方图.观察图形的信息,回答下列问题: (Ⅰ)求第四小组的频率,并补全这个频率分布直方图; (Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分; (Ⅲ)从成绩是80分以上(包括80分)的学生中选两人,求他们在同一分数段的概率.
已知函数的定义域为,若在上为增函数,则称为“比增函数”; (Ⅰ)若函数是“比增函数”,求实数的取值范围; (Ⅱ)已知,为“比增函数”,且的部分函数值由下表给出,
求证:.
)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1. (Ⅰ)求证:平面DAF⊥平面CBF; (Ⅱ)设FC的中点为M,求证:OM∥平面DAF; (Ⅲ)设平面CBF将几何体EFABCD分成的两个锥体的体积分别为,求.
△中,角的对边分别为,且 (Ⅰ)求; (Ⅱ)若且,求△面积最大值.
设数列的前n项和为,满足,且. (Ⅰ)求证是等比数列; (Ⅱ)若存在使得成等差数列,求.