小张早起在一条东西走向的笔直马路上晨跑,他在 A 处时, D 处学校和 E 处图书馆都在他的东北方向,当小张沿正东方向跑了 600 m 到达 B 处时, E 处图书馆在他的北偏东 15 ° 方向,然后他由 B 处继续向正东方向跑 600 m 到达 C 处,此时 D 处学校在他的北偏西 63 . 4 ° 方向,求 D 处学校和 E 处图书馆之间的距离.(结果保留整数)
(参考数据: sin 63 . 4 ° ≈ 0 . 9 , cos 63 . 4 ° ≈ 0 . 4 , tan 63 . 4 ° ≈ 2 . 0 , 2 ≈ 1 . 4 , 3 ≈ 1 . 7 , 6 ≈ 2 . 4 )
是三个连续的正整数,以b为边长作正方形,分别以c,为长和宽作长方形,哪个图形的面积大?为什么?
推理填空,如图1、 如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.解:∵∠A=∠F(已知)∴AC∥DF( )∴∠D=∠ ( ) 又∵∠C=∠D(已知)∴∠1=∠C(等量代换)∴BD∥CE( )
作图题(尺规作图,不写作法,但保留作图痕迹)如图,已知,∠α 、∠β。求作∠AOB,使∠AOB =2∠α+∠β,
先化简,再求值:,其中
正方形ABCD中,E点为BC中点,连接AE,过B点作BF⊥AE,交CD于F点,交AE于G点,连接GD,过A点作AH⊥GD交GD于H点.(1) 求证:△ABE≌△BCF;(2) 若正方形边长为4,AH =,求△AGD的面积.