如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口 C 测得教学楼顶部 D 的仰角为 18 ° ,教学楼底部 B 的俯角为 20 ° ,量得实验楼与教学楼之间的距离 AB = 30 m .
(1)求 ∠ BCD 的度数.
(2)求教学楼的高 BD .(结果精确到 0 . 1 m ,参考数据: tan 20 ° ≈ 0 . 36 , tan 18 ° ≈ 0 . 32 )
在一个不透明的布袋里装有4个完全相同的标有数字1、2、3、4的小球.小明从布袋里随机取出一个小球,记下数字为x,小红从布袋里剩下的小球中随机取出一个,记下数字为y.计算由x、y确定的点(x,y)在函数y=-x+5的图象上的概率.
如图,正方形ABCD中,点E在对角线AC上,连接EB.ED.(1)求证:△BCE≌△DCE;(2)延长BE交AD于点F,若∠DEB=140°,求∠AFE的度数.
(1)解不等式:2+≤x;(2)解方程组:
(1)计算:+|-1|-(-2)0;(2)化简:(x+)÷.
问题提出如图①,已知直线l与线段AB平行,试只用直尺作出AB的中点.初步探索如图②,在直线l的上方取一个点E,连接EA.EB,分别与l交于点M、N,连接MB.NA,交于点D,再连接ED并延长交AB于点C,则C就是线段AB 的中点.推理验证利用图形相似的知识,我们可以推理验证AC=CB.(1)若线段A.B.C.d长度均不为0,则由下列比例式中,一定可以得出b=d的是A. B. C. D.(2)由MN∥AB,可以推出△EFN∽△ECB,△EMN∽△EAB,△MND∽△BAD,△FND∽△CAD.所以,有,所以,AC=CB.拓展研究如图③,△ABC中,D是BC的中点,点P在AB上.(3)在图③中只用直尺作直线l∥BC.(4)求证:l∥BC.