课本中有一个例题:
有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为 6 m ,如何设计这个窗户,使透光面积最大?
这个例题的答案是:当窗户半圆的半径约为 0 . 35 m 时,透光面积最大值约为 1 . 05 m 2 .
我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为 6 m ,利用图3,解答下列问题:
(1)若 AB 为 1 m ,求此时窗户的透光面积?
(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.
如图,⊙O的直径AB垂直弦CD于点E,点F在AB的延长线上,且∠BCF=∠A. (1)求证:直线CF是⊙O的切线; (2)若⊙O的半径为5,DB=4.求sin∠D的值.
如图,已知⊙O分别切△ABC的三条边AB、BC、CA于点D、E、F,S△ABC=10cm2,C△ABC=10cm,且∠C=60°求: (1)⊙O的半径r; (2)扇形OEF的面积(结果保留π); (3)扇形OEF的周长(结果保留π)。
如图,已知PA、PB是⊙O的切线,A、B为切点,∠OAB=30°. (1)求∠APB的度数; (2)当OA=3时,求AP的长.
为了了解2014届某校男生报考泉州市中考体育测试项目的意向,某校课题研究小组从毕业年段各班男生随机抽取若干人组成调查样本,根据收集整理到的数据绘制成以下不完全统计图.根据以上信息,解答下列问题: (1)该小组采用的调查方式是____________,被调查的样本容量是_______; (2)请补充完整图中的条形统计图和扇形统计图(请标上百分率)(百分率精确到1%); (3)该校共有600名初三男生,请估计报考A类的男生人数.
先化简,再求值:,其中.