山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
有这样一道题:“计算的值,其中,” .甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果?
如果方程的解与方程的解相同,求式子的值 .
如图,在平面直角坐标系中,O为坐标原点.A.B两点的坐标分别为A(m,0)、B(0,n),且,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P运动时间为t秒. (1)求m、n的值与OA、OB的长; (2)连接PB,若△POB的面积不大于3且不等于0,则t的取值范围是 (请直接写出答案). (3)过P作直线AB的垂线,垂足为D,直线PD与y轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.
如图,△ABC为等边三角形,D为射线BC上一点,∠ADE=60°,DE与∠ACB的外角平分线交于点E. (1)如图1,点D在BC上,求证:CA=CD+CE; (2)如图2,若D在BC的延长线上,直接写出CA、CD、CE之间的数量关系.
已知:如图A,△ABC各角的平分线AD,BE,CF交于点O. (1)试说明∠BOC=90°+∠BAC; (2)如图B,过点O作OG⊥BC于G,试判断∠BOD与∠COG的大小关系(大于,小于或等于),并说明理由.