在一次测量旗杆高度的活动中,某小组使用的方案如下:如图,AB表示某同学从眼睛到脚底的距离,CD表示一根标杆,EF表示旗杆,AB、CD、EF都垂直于地面,若AB=1.6m,CD=2m,人与标杆之间的距离BD=1m,标杆与旗杆之间的距离DF=30m,求旗杆EF的高度.
如图,在矩形中,,,点在上,将沿折叠,点恰好落在对角线上的点,为上一点,经过点,
(1)求证:是的切线;
(2)在边上截取,点是线段的黄金分割点吗?请说明理由.
亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.
(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?
(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?
十八大以来,某校已举办五届校园艺术节,为了弘扬中华优秀传统文化,每届艺术节上都有一些班级表演“经典诵读”“民乐演奏”、“歌曲联唱”、“民族舞蹈”等节目.小颖对每届艺术节表演这些节目的班级数进行统计,并绘制了如图所示不完整的折线统计图和扇形统计图.
(1)五届艺术节共有 个班级表演这些节目,班数的中位数为 ,在扇形统计图中,第四届班级数的扇形圆心角的度数为 ;
(2)补全折线统计图;
(3)第六届艺术节,某班决定从这四项艺术形式中任选两项表演 “经典诵读”、“民乐演奏”、“歌曲联唱”、“民族舞蹈”分别用,,,表示),利用树状图或表格求出该班选择和两项的概率.
先化简,再从中选一个适合的整数代入求值.
如图,在平面直角坐标系中,为坐标原点,点,点,的中线与轴交于点,且经过,,三点.
(1)求圆心的坐标;
(2)若直线与相切于点,交轴于点,求直线的函数表达式;
(3)在(2)的条件下,在过点且以圆心为顶点的抛物线上有一动点,过点作轴,交直线于点.若以为半径的与直线相交于另一点.当时,求点的坐标.