如图, ΔABC 内接于 ⊙ O ,点 D 在 ⊙ O 外, ∠ ADC = 90 ° , BD 交 ⊙ O 于点 E ,交 AC 于点 F , ∠ EAC = ∠ DCE , ∠ CEB = ∠ DCA , CD = 6 , AD = 8 .
(1)求证: AB / / CD ;
(2)求证: CD 是 ⊙ O 的切线;
(3)求 tan ∠ ACB 的值.
广州市努力改善空气质量,近年来空气质量明显好转,根据广州市环境保护局公布的2006﹣2010这五年各年的全年空气质量优良的天数,绘制折线图如图.根据图中信息回答:(1)这五年的全年空气质量优良天数的中位数是 ,极差是 .(2)这五年的全年空气质量优良天数与它前一年相比,增加最多的是 年(填写年份).(3)求这五年的全年空气质量优良天数的平均数.
如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:BE=CD.
在平面直角坐标系xoy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若∣x1-x2∣≥∣y1-y2∣,则点P1与点P2的“非常距离”为∣x1-x2∣;若∣x1-x2∣<∣y1-y2∣,则点P1与点P2的“非常距离”为∣y1-y2∣.例如:点P1(1,2),点P2(3,5),因为∣1-3∣<∣2-5∣,所以点P1与点P2的“非常距离”为∣2-5∣=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q的交点)。(1)已知点,B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标。
在中,,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转得到线段PQ。(1) 若且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2) 在图2中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB的大小(用含的代数式表示),并加以证明;(3) 对于适当大小的,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出的范围。
已知二次函数在和时的函数值相等。(1)求二次函数的解析式;(2)若一次函数的图象与二次函数的图象都经过点A,求m和k的值;(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移个单位后得到的图象记为C,同时将(2)中得到的直线向上平移n个单位。请结合图象回答:当平移后的直线与图象G有公共点时,n的取值范围。