如图,在平面直角坐标系 xOy 中,已知正比例函数 y = 1 2 x 的图象与反比例函数 y = k x 的图象交于 A ( a , − 2 ) , B 两点.
(1)求反比例函数的表达式和点 B 的坐标;
(2) P 是第一象限内反比例函数图象上一点,过点 P 作 y 轴的平行线,交直线 AB 于点 C ,连接 PO ,若 ΔPOC 的面积为3,求点 P 的坐标.
如图,在Rt△ABC中,∠ACB=90°,E为AC上一点,且AE=BC,过点A作AD⊥CA,垂足为A,且AD=AC,AB、DE交于点F. (1)判断线段AB与DE的数量关系和位置关系,并说明理由; (2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.
如图,在△ABC中,AC边的垂直平分线DM交AC于D,BC边的垂直平分线EN交BC于E,DM与EN相交于点F. (1)若△CMN的周长为20cm,求AB的长; (2)若∠MFN=70°,求∠MCN的度数.
如图,在四边形ABCD中,∠BAD=∠BCD=90°,M、N分别是BD、AC的中点. (1)求证:MN⊥AC; (2)若∠ADC=120°,求∠1的度数.
如图,在△ABC中,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E. (1)求证:AD=AE; (2)若BE∥AC,试判断△ABC的形状,并说明理由.
如图,△ABC≌△ADE,∠EAB =125°,∠CAD=25°,求∠BFD的度数.