某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有 A, B两种客车可供租用, A型客车每辆载客量45人, B型客车每辆载客量30人.若租用4辆 A型客车和3辆 B型客车共需费用10700元;若租用3辆 A型客车和4辆 B型客车共需费用10300元.
(1)求租用 A, B两型客车,每辆费用分别是多少元;
(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?
如图1,将射线OX按逆时针方向旋转β角,得到射线OY,如果点P为射线OY上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置,并记为P(a,β),例如,图2中,如果OM=8,∠XOM=110°,那么点M在平面内的位置,记为M(8,110),根据图形,解答下面的问题: (1)如图3,如果点N在平面内的位置记为N(6,30),那么ON= ;∠XON= . (2)如果点A、B在平面内的位置分别记为A(5,30),B(12,120),试求A、B两点之间的距离并画出图.
某气象研究中心观测一场沙尘暴从发生到结束全过程,开始时风暴平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时,一段时间,风暴保持不变,当沙尘暴遇到绿色植被区时,其风速平均每小时减小1千米/时,最终停止.结合风速与时间的图象,回答下列问题: (1)在y轴( )内填入相应的数值; (2)沙尘暴从发生到结束,共经过多少小时? (3)求出当x≥25时,风速y(千米/时)与时间x(小时)之间的函数关系式; (4)若风速达到或超过20千米/时,称为强沙尘暴,则强沙尘暴持续多长时间?
△ABC在方格纸中的位置如图所示,方格纸中的每个小正方形的边长为1个单位,(1)△A1B1C1与△ABC关于y轴对称,请你在图中画出△A1B1C1;(2)将△ABC向下平移8个单位后得到△A2B2C2,请你在图中画出△A2B2C2;请分别写出A2、B2、C2的坐标.(3)求△ABC的面积.
已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x-4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x-4>kx+b的解集.
如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.