某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有 A , B 两种客车可供租用, A 型客车每辆载客量45人, B 型客车每辆载客量30人.若租用4辆 A 型客车和3辆 B 型客车共需费用10700元;若租用3辆 A 型客车和4辆 B 型客车共需费用10300元.
(1)求租用 A , B 两型客车,每辆费用分别是多少元;
(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?
已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.
(1)如图1,若 C O ⊥ A B , ∠ D = 30 ° , O A = 1 ,求AD的长;
(2)如图2,若DC与⊙O相切,E为OA上一点,且 ∠ A C D = ∠ A C E .求证: C E ⊥ A B .
观察以下等式:
第1个等式: ( 2 × 1 + 1 ) 2 = ( 2 × 2 + 1 ) 2 ﹣ ( 2 × 2 ) 2 ,
第2个等式: ( 2 × 2 + 1 ) 2 = ( 3 × 4 + 1 ) 2 ﹣ ( 3 × 4 ) 2 ,
第3个等式: ( 2 × 3 + 1 ) 2 = ( 4 × 6 + 1 ) 2 ﹣ ( 4 × 6 ) 2 ,
第4个等式: ( 2 × 4 + 1 ) 2 = ( 5 × 8 + 1 ) 2 ﹣ ( 5 × 8 ) 2 ,
……
按照以上规律,解决下列问题:
(1)写出第5个等式:________;
(2)写出你猜想的第 n 个等式(用含 n 的式子表示),并证明.
某地区2020年进出口总额为 520 亿 元,2021年进出口总额比2020年有所增加,其中进口额增加了 25 % ,出口额增加了 30 % .
注:进出口总额=进口额+出口额.
(1)设2020年进口额为x亿元,出口额为y亿元,请用含 x , y 的代数式填表:
年份
进口额/亿元
出口额/亿元
进出口总额/亿元
2020
x
y
520
2021
1 . 25 x
1 . 3 y
(2)已知2021年进出口总额比2020年增加了 140 亿 元,求2021年进口额和出口额分别是多少亿元?
已知二次函数图象的顶点坐标为 A ( 1 , 4 ) ,且与x轴交于点 B ( ﹣ 1 , 0 ) .
(1)求二次函数的表达式;
(2)如图,将二次函数图象绕x轴的正半轴上一点 P ( m , 0 ) 旋转 180 ° ,此时点A、B的对应点分别为点C、D.
①连结AB、BC、CD、DA,当四边形ABCD为矩形时,求m的值;
②在①的条件下,若点M是直线x=m上一点,原二次函数图象上是否存在一点Q,使得以点B、C、M、Q为顶点的四边形为平行四边形,若存在,求出点Q的坐标;若不存在,请说明理由.
如图,平行四边形ABCD中, A B = 5 , B C = 10 ,BC边上的高 A M = 4 ,点E为BC边上的动点(不与B、C重合,过点E作直线AB的垂线,垂足为F,连接DE、DF.
(1)求证: △ A B M ∽ △ E B F ;
(2)当点E为BC的中点时,求DE的长;
(3)设 B E = x ,△DEF的面积为y,求y与x之间的函数关系式,并求当x为何值时,y有最大值,最大值是多少?