某自行车经销商计划投入7.1万元购进100辆 A 型和30辆 B 型自行车,其中 B 型车单价是 A 型车单价的6倍少60元.
(1)求 A 、 B 两种型号的自行车单价分别是多少元?
(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行车的总数不变,那么至多能购进 B 型车多少辆?
如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题: (1)作出△ABC向左平移5格后得到的△A1B1C1; (2)作出△ABC关于点O的中心对称图形△A2B2C2; (3)求△A1B1C1的面积.
作图题:在方格纸中,将△ABC向右平移3个单位得到△A1B1C1,画出△A1B1C1.
如图,方格纸中每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图所示. (1)将△ABC向右平移4个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点C1的坐标. (2)作出△A1B1C1关于x轴的对称图形△A2B2C2,并直接写出点A2的坐标. (3)请由图形直接判断以点C1、C2、B2、B1为顶点的四边形是什么四边形?并求出它的面积.
在平面直角坐标系中,△ABC的位置如图所示,请解答下列问题: (1)将△ABC向下平移3个单位长度,得到△A1B1C1,画出平移后的△A1B1C1; (2)将△ABC绕点O顺时针方向旋转180°,得到△A2B2C2,画出旋转后的△A2B2C2,并写出A2点的坐标.
顶点在网格交点的多边形叫做格点多边形,如图,在一个9×9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为1个单位长度. (1)在网格中画出△ABC向上平移4个单位后得到的△A1B1C1; (2)在网格中画出△ABC绕点A逆时针旋转90°后得到的△AB2C2; (3)在(1)中△ABC向上平移过程中,求边AC所扫过区域的面积.