请完成如下探究系列的有关问题:
探究1:如图1, ΔABC 是等腰直角三角形, ∠ BAC = 90 ° ,点 D 为 BC 上一动点,连接 AD ,以 AD 为边在 AD 的右侧作正方形 ADEF ,连接 CF ,则线段 CF , BD 之间的位置关系为 ,数量关系为 .
探究2:如图2,当点 D 运动到线段 BC 的延长线上,其余条件不变,探究1中的两条结论是否仍然成立?为什么?(请写出证明过程)
探究3:如图3,如果 AB ≠ AC , ∠ BAC ≠ 90 ° , ∠ BCA 仍然保留为 45 ° ,点 D 在线段 BC 上运动,请你判断线段 CF , BD 之间的位置关系,并说明理由.
(8分)在社区全民健身活动中,父子俩参加跳绳比赛.相同时间内父亲跳180个,儿子跳210个.已知儿子每分钟比父亲多跳20个,父亲、儿子每分钟各跳多少个?
已知,AB是⊙O的直径,AB=8,点C在⊙O的半径OA上运动,PC⊥AB,垂足为C,PC=5,PT为⊙O的切线,切点为T. ⑴如图⑴,当C点运动到O点时,求PT的长; ⑵如图⑵,当C点运动到A点时,连结PO、BT,求证:PO∥BT; ⑶如图⑶,设,,求与的函数关系式及的最小值.
如图,直线交轴于A点,交轴于B点,过A、B两点的抛物线交轴于另一点C(3,0). ⑴求抛物线的解析式; ⑵在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
两个全等的直角三角形重叠放在直线上,如图⑴,AB=6,BC=8,∠ABC=90°,将Rt△ABC在直线上左右平移,如图⑵所示. ⑴求证:四边形ACFD是平行四边形; ⑵怎样移动Rt△ABC,使得四边形ACFD为菱形; ⑶将Rt△ABC向左平移,求四边形DHCF的面积.
如图,已知一次函数的图像与轴,轴分别交于A(1,0)、B(0,-1)两点,且又与反比例函数的图像在第一象限交于C点,C点的横坐标为2. ⑴求一次函数的解析式; ⑵求C点坐标及反比例函数的解析式.