某农场去年计划生产玉米和小麦共200吨,采用新技术后,实际产量为225吨,其中玉米超产 5 % ,小麦超产 15 % ,该农场去年实际生产玉米、小麦各多少吨?
已知2x+5y-3=0,求的值.
作图: (1)画出图中△ABC的高AD(标注出点D的位置); (2)画出把△ABC沿射线AD方向平移2cm后得到的△A1B1C1; (3)根据“图形平移”的性质,得BB1=cm,AC与A1C1的关系是:.
如图,经过原点的抛物线与轴的另一个交点为A.过点作直线轴于点M,交抛物线于点B,过点B作直线BC∥轴与抛物线交于点C(B、C不重合),连结CP. (1)当时,求点A的坐标及BC的长; (2)当时,连结CA,问为何值时? (3)过点P作且,问是否存在,使得点E落在坐标轴上?若存在,求出所有满足要求的的值,并求出相对应的点E坐标;若不存在,请说明理由.
如图:在⊙O中,经过⊙O内一点P有一条弦AB,且AP=4,PB=3,过P点另有一动弦CD,连结AC,DB.设CP=x,PD=y. (1)求证:△ACP∽△DBP; (2)求y关于x的函数解析式; (3)若CD=8时,求S△ACP:S△DBP的值.
已知二次函数,是不为0的常数. (1)除0以外,不论取何值时,这个二次函数的图像一定会经过两个定点,请你求出这两个定点; (2)如果该二次函数的顶点不在直线的右侧,求的取值范围.