一个盒子里有标号分别为1,2,3,4,5,6的六个小球,这些小球除标号数字外都相同.
(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的小球的概率;
(2)甲、乙两人用这六个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.
如图,四边形ABCD是边长为2的正方形,点G是BC延长线上一点,连接AG,点E、F分别在AG上,连接BE、DF,∠1=∠2,∠3=∠4. (1)证明:△ABE≌△DAF; (2)若∠AGB=30°,求EF的长.
已知:如图,在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD的边AB、BC、DA上,AE=2. (1)如图(1),当四边形EFGH为正方形时,求△GFC的面积. (2)如图(2),当四边形EFGH为菱形,且BF=a时,求△GFC的面积(用含a的代数式表示). (3)在(2)的条件下,△GFC的面积能否等于2?请说明理由.
如图,在矩形ABCD中,DF平分∠ADC交AC于点E,交BC于点F,∠BDF=15°,求∠DOC与∠COF的度数.
如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=a. (1)求∠ABC的度数. (2)求对角线AC的长度. (3)求菱形ABCD的面积.
如图,已知正方形ABCD的边长为1,连接AC、BD,CE平分∠ACD交BD于点E,求DE的长.