将一副三角板 Rt Δ ABD 与 Rt Δ ACB (其中 ∠ ABD = 90 ° , ∠ D = 60 ° , ∠ ACB = 90 ° , ∠ ABC = 45 ° ) 如图摆放, Rt Δ ABD 中 ∠ D 所对直角边与 Rt Δ ACB 斜边恰好重合.以 AB 为直径的圆经过点 C ,且与 AD 交于点 E ,分别连接 EB , EC .
(1)求证: EC 平分 ∠ AEB ;
(2)求 S △ ACE S △ BEC 的值.
如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,AC=6,CD=。 求(1)∠DAC的度数;(2)AB,BD的长。
若抛物线的顶点坐标是(1,16),并且抛物线与轴两交点间的距离为8,(1)试求该抛物线的关系式; (2)求出这条抛物线上纵坐标为12的点的坐标。
计算 (1) (2)
已知Rt△ABC,∠ACB=90°,AC=BC=4,点O是AB中点,点P、Q分别从点A、C出发,沿AC、CB以每秒1个单位的速度运动,到达点C、B后停止。连结PQ、点D是PQ中点,连结CD并延长交AB于点E. (1)试说明:△POQ是等腰直角三角形; (2)设点P、Q运动的时间为t秒,试用含t的代数式来表示△CPQ的面积S,并求出 S的最大值; (3)如图2,点P在运动过程中,连结EP、EQ,问四边形PEQC是什么四边形,并说明理由; (4)求点D运动的路径长(直接写出结果).
如图,在梯形中,,已知,点为边上的动点,连接,以为圆心,为半径的⊙分别交射线于点,交射线于点,交射线于,连接. (1)求的长. (2)当时,求的长. (3)在点的运动过程中, ①当时,求⊙的半径. ②当时,求⊙的半径(直接写出答案).