求证:相似三角形对应边上的中线之比等于相似比.
要求:①根据给出的 ΔABC 及线段 A ' B ' , ∠ A ' ( ∠ A ' = ∠ A ) ,以线段 A ' B ' 为一边,在给出的图形上用尺规作出△ A ' B ' C ' ,使得△ A ' B ' C ' ∽ ΔABC ,不写作法,保留作图痕迹;
②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.
如图,已知在△ABC中,AB=AC,BC比AB大3,,点G是△ABC的重心,AG的延长线交边BC于点D.过点G的直线分别交边AB于点P、交射线AC于点Q. (1)求AG的长; (2)当∠APQ=90º时,直线PG与边BC相交于点M.求的值; (3)当点Q在边AC上时,设BP=,AQ=,求关于的函数解析式,并写出它的定义域.[
如图,已知在平面直角坐标系xOy中,抛物线与x轴交于点A、B(点A在点B右侧),与y轴交于点C(0,-3),且OA=2OC. (1)求这条抛物线的表达式及顶点M的坐标; (2)求的值; (3)如果点D在这条抛物线的对称轴上,且∠CAD=45º,求点D的坐标.
已知:如图,在正方形ABCD中,点E是边AD的中点,联结BE,过点A作,分别交BE、CD于点H、F,联结BF. (1)求证:BE=BF; (2)联结BD,交AF于点O,联结OE.求证:
甲、乙两车都从A地前往B地,如图分别表示甲、乙两车离A地的距离S(千米)与时间t(分钟)的函数关系.已知甲车出发10分钟后乙车才出发,甲车中途因故停止行驶一段时间后按原速继续驶向B地,最终甲、乙两车同时到达B地,根据图中提供的信息解答下列问题: (1)甲、乙两车行驶时的速度分别为多少? (2)乙车出发多少分钟后第一次与甲车相遇? (3)甲车中途因故障停止行驶的时间为多少分钟?
已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3cm,BC=10cm,以BC为直径作⊙O交射线AQ于E、F两点, 求:(1)圆心O到AQ的距离; (2)线段EF的长.