如图,池塘边一棵垂直于水面 BM 的笔直大树 AB 在点 C 处折断, AC 部分倒下,点 A 与水面上的点 E 重合,部分沉入水中后,点 A 与水中的点 F 重合, CF 交水面于点 D , DF = 2 m , ∠ CEB = 30 ° , ∠ CDB = 45 ° ,求 CB 部分的高度.(精确到 0 . 1 m .参考数据: 2 ≈ 1 . 41 , 3 ≈ 1 . 73 )
先阅读,后解答: 像上述解题过程中,相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化, (1)的有理化因式是;的有理化因式是。 (2)将下列式子进行分母有理化: ①=;②=。 (3)已知,比较与的大小关系。
若x=0是关于x的一元二次方程的解,求实数m的值,并解此方程.
画图: 已知:点C是∠AOB的边OB上的一点,过点C作OA的垂线PC,与OA交与点P,在PC上求作一点Q,使该点到∠AOB的两边的距离相等。
一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外其它都一样。小亮从布袋中摸出一个球后放回去摇匀,再摸出一个球。请你利用列举法(列表或画树状图)分析并求出小亮两次都能摸到白球的概率。
计算: