解方程组
阅读理解填空: (1)如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ. 证明:∵AB∥CD, ∴∠MEB=∠MFD( ) 又∵∠1=∠2, ∴∠MEB-∠1=∠MFD-∠2, 即∠MEP=∠______ ∴EP∥_____.( ) (2)如图,EF∥AD,∠1=∠2,∠BAC=70 o,求∠AGD. 解:∵EF∥AD, ∴∠2=() 又∵∠1=∠2, ∴∠1=∠3, ∴AB∥() ∴∠BAC+=180 o() ∵∠BAC=70 o, ∴∠AGD=。
如图,与是邻补角,OD、OE分别是与的平分线,试判断OD与OE的位置关系,并说明理由.
先化简,再求值:,其中a=-2。
计算: (1) (2) (3) (4) (5) (6)
已知:△ABC中,∠A=90°,AB=AC,D为BC的中点, (1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形; (2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.