如图, BE 是 ⊙ O 的直径,点 A 和点 D 是 ⊙ O 上的两点,连接 AE , AD , DE ,过点 A 作射线交 BE 的延长线于点 C ,使 ∠ EAC = ∠ EDA .
(1)求证: AC 是 ⊙ O 的切线;
(2)若 CE = AE = 2 3 ,求阴影部分的面积.
若反比例函数y=与一次函数y=kx+b的图象都经过点(-2,-1),且当x=3时,这两个函数值相等,求反比例函数解析式.
如图,Rt△AOB的顶点A是一次函数y=-x+m+3的图象与反比例函数y=的图象在第二象限的交点,且S△AOB=1,求点A的坐标.
已知函数y=-4x2-2mx+m2与反比例函数y=的图象在第二象限内的一个交点的横坐标是-2,求此两个函数的解析式.
如图,在平面直角坐标系xOy中,二次函数图象的顶点坐标为C(-4,),且在x轴上截得的线段AB的长为6.(1)求二次函数的解析式;(2)在y轴上确定一点M,使MA+MC的值最小,求出点M的坐标;(3)在x轴下方的抛物线上,是否存在点N,使得以N、A、B三点为顶点的三角形与△ABC相似?如果存在,求出点N的坐标;如果不存在,请说明理由.
如图,菱形ABCD的边长为48cm,∠A=60°,动点P从点A出发,沿着线路AB—BD做匀速运动,动点Q从点D同时出发,沿着线路DC—CB—BA做匀速运动.(1)求BD的长;(2)已知动点P、Q运动的速度分别为8cm/s、10cm/s. 经过12秒后,P、Q分别到达M、N两点,若按角的大小进行分类,请问△AMN是哪一类三角形,并说明理由;(3)设问题(2)中的动点P、Q分别从M、N同时沿原路返回,动点P的速度不变,动点Q的速度改变为cm/s,经过3秒后,P、Q分别到达E、F两点,若△BEF与问题(2)中的△AMN相似,试求的值.