某商场销售一种商品的进价为每件30元,销售过程中发现月销售量 y (件 ) 与销售单价 x (元 ) 之间的关系如图所示.
(1)根据图象直接写出 y 与 x 之间的函数关系式.
(2)设这种商品月利润为 W (元 ) ,求 W 与 x 之间的函数关系式.
(3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少?
如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A—C—B向点B运动,设运动时间为t秒(t>0),(1)在AC上是否存在点P使得PA=PB?若存在,求出t的值;若不存在,说明理由;(2)若点P恰好在△ABC的角平分线上,请直接写出t的值.
如图,已知直线l1∥l2∥l3,且l1,l2之间的距离为1, l2,l3之间的距离为2 ,点A、C分别在直线l2,l1上,(1)利用直尺和圆规作出以AC为底的等腰△ABC,使得点B落在直线l3上(保留作图痕迹,不写作法);(2)若(1)中得到的△ABC为等腰直角三角形,求AC的长.
如图,△是等边三角形,点、分别是、的延长线上的点,且,的延长线交于点.(1)求证:;(2)求的度数.
如图,在等腰RT△中,,,点是斜边的中点,点、分别为、边上的点,且.(1)判断与的大小关系,并说明理由;(2)若,,求△的面积.
.如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F,试判断△AFC的形状,并说明理由.