如图1,点 E 是正方形 ABCD 边 CD 上任意一点,以 DE 为边作正方形 DEFG ,连接 BF ,点 M 是线段 BF 中点,射线 EM 与 BC 交于点 H ,连接 CM .
(1)请直接写出 CM 和 EM 的数量关系和位置关系;
(2)把图1中的正方形 DEFG 绕点 D 顺时针旋转 45 ° ,此时点 F 恰好落在线段 CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;
(3)把图1中的正方形 DEFG 绕点 D 顺时针旋转 90 ° ,此时点 E 、 G 恰好分别落在线段 AD 、 CD 上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.
如图,四边形ABCD为菱形,已知A(0,4),B(-3,0)。 (1)求点D的坐标; (2)求经过点C的反比例函数解析式.
代数式的值可以为0吗?为什么?
选用适当的方法解下列方程(每小题4分,共12分): (1) (2) (3)
如图,在平面直角坐标系中,点A的坐标为(3,0),直线l与x轴正半轴夹角为30°,点B为直线l上的一个动点,延长AB至点C,使得AB=BC,过点C作CD⊥x轴于点D,交直线l于点F,过点A作AE∥l交直线CD于点E. (1)若点B的横坐标为6,则点C的坐标为(______,_____),DE的长为 ; (2)若点B的横坐标大于3,则线段CF的长度是否发生改变?若不变,请求出线段CF的长度;若改变,请说明理由; (3)连结BE,在点B的运动过程中,以OB为直径的⊙P与△ABE某一边所在的直线相切,请求出所有满足条件的DE的长.
某超市销售一种饮料,每瓶进价为4元.经市场调查表明,当售价在5元到8元之间(含5元,8元)浮动时,每瓶售价每增加1元,日均销售量减少40瓶;当售价为每瓶为6元时,日均销售量为120瓶.问:销售价格定为每瓶多少元时,所得日均毛利润(每瓶毛利润=每瓶售价-每瓶进价)最大?最大日均毛利润为多少元?