如图1,点 E 是正方形 ABCD 边 CD 上任意一点,以 DE 为边作正方形 DEFG ,连接 BF ,点 M 是线段 BF 中点,射线 EM 与 BC 交于点 H ,连接 CM .
(1)请直接写出 CM 和 EM 的数量关系和位置关系;
(2)把图1中的正方形 DEFG 绕点 D 顺时针旋转 45 ° ,此时点 F 恰好落在线段 CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由;
(3)把图1中的正方形 DEFG 绕点 D 顺时针旋转 90 ° ,此时点 E 、 G 恰好分别落在线段 AD 、 CD 上,如图3,其他条件不变,(1)中的结论是否成立,请说明理由.
如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3) (1)求出的面积. (2)在图中作出关于轴的对称图形. (3)写出点的坐标.
如图,点B、E、C、F在一条直线上,BC="EF" AB∥DE,请你添加一个条件,使△ABC≌△DEF。并写出证明过程.
下图是等边三角形,请你用三种方法把它们分成四个等腰三角形.(请标注上必要的角度)
(每小题5分,共10分) (1)化简: +—(2)求x的值:
在平面直角坐标系xOy中,已知抛物线的对称轴是,并且经过(-2,-5)和(5,-12)两点. (1)求此抛物线的解析式; (2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标; (3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.