如图,抛物线 y = a x 2 + 4 x + c ( a ≠ 0 ) 经过点 A ( − 1 , 0 ) ,点 E ( 4 , 5 ) ,与 y 轴交于点 B ,连接 AB .
(1)求该抛物线的解析式;
(2)将 ΔABO 绕点 O 旋转,点 B 的对应点为点 F .
①当点 F 落在直线 AE 上时,求点 F 的坐标和 ΔABF 的面积;
②当点 F 到直线 AE 的距离为 2 时,过点 F 作直线 AE 的平行线与抛物线相交,请直接写出交点的坐标.
(巴中)如图,在平面直角坐标系xOy中,一次函数(a,b为常数,且)与反比例函数(m为常数,且)的图象交于点A(﹣2,1)、B(1,n).(1)求反比例函数和一次函数的解析式;(2)连结OA、OB,求△AOB的面积;(3)直接写出当时,自变量x的取值范围.
(巴中)如图,在平面直角坐标系xOy中,二次函数()的图象与x轴交于A(﹣2,0)、B(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.
(广安)如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数()的图象在第一象限交于点C,如果点B的坐标为(0,2),OA=OB,B是线段AC的中点.(1)求点A的坐标及一次函数解析式.(2)求点C的坐标及反比例函数的解析式.
(广安)为了贯彻落实市委市府提出的“精准扶贫”精神.某校特制定了一系列关于帮扶A、B两贫困村的计划.现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.
(广安)如图,边长为1的正方形ABCD一边AD在x负半轴上,直线l:经过点B(x,1)与x轴,y轴分别交于点H,F,抛物线顶点E在直线l上.(1)求A,D两点的坐标及抛物线经过A,D两点时的解析式;(2)当抛物线的顶点E(m,n)在直线l上运动时,连接EA,ED,试求△EAD的面积S与m之间的函数解析式,并写出m的取值范围;(3)设抛物线与y轴交于G点,当抛物线顶点E在直线l上运动时,以A,C,E,G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.